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There are two treatments of Hamilton’s principle: the classical one, 
founded on the calculus of variations (Hertz [ 1 I, Kerner 12 1 ) and the 
formal one, given by Holder [3 I. Mechanical interpretations are known 
only for the first one of these, and one such interpretation will concern 
us here. 

Hertz gave an example of a nonholonomic system (a sphere which rolls 
without slipping) to which Hamilton’s principle is not applicable. In 
1931, Kerner showed that, if one regards Hamilton’s principle as a vari- 
ational principle with side conditions when considering systems with 
differential constraints, then a necessary and sufficient condition that 
the Euler variational equations and the corresponding equations of motion 
coincide is that the system be holonomic. We shall consider below the 

possibility of deriving the equations of motion of systems with differ- 

ential constraints from the variational principle with side conditions 

8 ‘Fdt=O 
s 
tr 

where F is a certain function of time. the coordinates and the velocities 

of the particles of the system. 

1. Consider a mechanical system. Let g,, . . . . qn be the Lagrangian 

coordinates, which are constrained only by the differential relations 

n--m 

6% = YP’ + 2 Q,m+T qm+l = 0 (p = 1,. . . , m) (1.1) 

with coefficients 

For simplicity 

nomic. Sometimes, 

be written in the 

differentiable continuously in a certain region A. 

it will be supposed that the constraints are sclero- 

for the sake of convenience, the constraints (1.1) will 

following form: 
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n 1 
1 for s=p 

q3 = x apsgs’ = 0, ups = 0 for m>s+P (W 

S=1 ap, m+r for s>m 

A motion 

9s = VS (t) (s=l,. . . ,n) (1.3) 

of a material system will be said to be kinematically admissible provided 

that the functions +,,(t) satisfy the constraints identically. 

Generalizing Hamilton’s principle, let us replace the Lagrangian 
function L in the integrand by an arbitrary differentiable function F 
depending upon time, the coordinates and the velocities of the particles 
of the system. Thus we are led to the variational principle with side 

conditions 

6 t’Fdi! = 0 s 
t1 

(1.4) 

where the variation is to be taken over the kinematically admissible 
motions; here, as usual 

(s = 1, . . . I nl 

Euler’s equations for the variational principle (1.4), with constraints 
(1.2), using Lagrange multipliers hp, are 

d 8F aF -_-- 
dt %s’ a¶, 

(1.5) 

or, carrying out the differentiations, to put the acceleration terms in 
evidence 

i *q/+i&3’ab8+i hjqi-$)+.. .=O (1.6) 
?==I P=1 P=1 

‘ibe constraint equations (1.1) yield 

n-m 

QP” + 2 up, m+s qm;* -t . . . = 0 
S=l 

(1.71 

In Equations (1.6) and (1.7) the dots denote terms which do not con- 
tain q”, h’ and X . Let us suppose that we are in the “normaln case, i.e. 
when the determinant ~5 
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(1.8) 

a2F a2F 

ad aq,& . * * aql' aqn' I * * f 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a2F a2F 
aq,s aqlt a - l * - - * - . s - s . . . s * aq,t aq,t 0 . . . 1 

a=F a2F 

Qm+1 Q1 
I a , . . . . . . . . . . . . . . . . . aq,il aq,, a,, m+l . . . a,,,+l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

av aZF a2F aaF * 

aq,‘ ad * * * aq,l aq,' aqnl aq,& * * - aq,12 al, . . . amn 

1 . . . 0 a 
1, m+1 * * * allI 0 . . . 0 

* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 . . . 1 am,m+l . * - amn 0 . . . 0 

# C@ 

Under these assumptions Equations (1.6) and (1.7) may be solved for 

the 9,. ” and A@‘, and thus 

qr” = QT V, q, Q’, A), ?V’ = AP (t, q, Q’, A) (1.9) 

2. In classical mechanics the following principle 1 always holds: the 
acceleration of a particle of a system may be uniquely determined at a 
given moment provided that at this same moment one knows the external 
forces, the constraints and all the coordinates and velocities of the 
particle in question. 

V.I. Kirgetov suggested the use of this principle as a criterion for 
the applicability of the variational principle (1.4). 

Consider Equations (1.9). Let us assume that in the kinematically 
admissible motion the functions Q depend upon the parameters XP for whose 
determination only differential equations are available. The parameters 
AP may only be determined by means of the integration of the system of 
equations (1.9). In other words, in order to know the dependence of the 
accelerations on the instantaneous position coordinates and velocities 
it is necessary to know at all times during the motion the dependence of 
the accelerations on the coordinates, on the velocities and on the para- 
meters hp. ‘lhis contradicts the mechanical principle 1, although it does 
not interfere with the solution of the mathematical problem. 

In order that principle 1 hold it is necessary (and clearly also 
sufficient) that for kinematically admissible motions the functions Q, 
be independent of the parameters XP, i. e. that all the partial derivatives 
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aQ, /aA, vanish identically in t, q, q’ as a consequence of the con- 

straints 

dQ,/dhF = 0 (r == 1, . . , n; p==l,...,m) (2.1) 

Theorem. For nonholonomic systems the Euler equations of the varia- 

tional principle (1.41, with fixed end-points and with the side condi- 

tions expressed by the constraints (1.1) 

01) = 0 

are never compatible, generally speaking, with principle 1, for any 

function F. 

The phrase "generally speaking" refers to the particular case A= 0 

in the variational problem. 

Proof. Let us make evident the dependence of Q, on hp. It is obvious 
that 

where Ar is obtained from the determinant A by replacing the rth column 

by the free terms of Equations (1.6) and (1.7). The determinant A does 

not depend upon Xg, therefore (2.1) holds identically in t, q, q’ in view 

of the constraint equations. Differentiating, we find that the deter- 

minant dAr/G'Ap= Arp equals zero, a determinant which is obtained 

from A by replacing the rth column of A by the following elements, 

written in succession from top to bottom: 

am awP a&-_,.. ., a@;-_ 9 o*...,o 
n 

Lemma. Suppose that the determinant of order n + m 

f II * - - f In f l,n+i f ' ' . l,+ 

D= . . . . . . . . . . . . . . . . . . . . . . . . . 

f nfm.1 * - . fn+m,n fn+m. n+1 * - - fnfm, nfm 

is not zero, and that when the first n columns are replaced, 

ion, by the column 

d= .d!. 
( ) d 7t+Vl 

in success- 

while leaving the other columns of D unaltered, one obtains n deter- 

minants D,(F = 1, . . . . n) which are all zero. Then the column d must be 
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a linear combination of the last m columns of the determinant D, that is 

4 = $ ciz+r li, n+p (j=l,,...n+)n) 
P=l 

Indeed, since D f 0 and Dr = 0, the column d, which is the rth column 

of the determinant Dr, must be a linear combination of the remaining 

columns of the determinant Dr 

(j=l,*..,n fm) 

Analogously, for 16 n 

from which it follows that 

$ fjk (bk(“) - bk(*)) f i fj. n+p (Cn$L - Cn!$) + bl’r’fjl - b,“)fj, = 0 

k=l 
k+r. k+l 

p=1 

and since D f 0, these equations give 

b$‘) = bpW = 0, 

for arbitrary 1, r = 1, . . . , n, and the lemma is proved. 

In view of the lemma, applied to the determinant A, we have 

amp a&-= a% cnso a,, (S=i,...,ny (2.2) 
p=i 

which, together with (1.2), yields 

As a consequence of these identities, and of (1.1) and (1.21, we ob- 

tain 

The last equation must hold for arbitrary q,;* and an arbitrary 

point of the domain A. Hence 
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aab, m+o 
P. mf+ aqp 1 = 0 (2.3) 

.(p = 1, . . . , m; 6, z = 1, . . . , n-m ) 

must hold throughout the domain A. 

These equations are the necessary and sufficient conditions for the 
integrability of the constraint relations (1.11, and the theorem is 

proved. 

3. The fundamental equations (2.1) may be proved in another manner. 
Instead of principle 1, let us employ the following principle 2 which is 
equivalent to it: the motion of the particles of the system under given 
forces is uniquely determined by the initial values of time, all of its 
coordinates and all of its velocities. According to this principle Aqua- 
tions (1.9) define a family of motions which depend on 2n + m + 1 para- 

meters tO, qSo, 9& X PO: 

which obey Equations (1.1) 
n-m 

rj = &I f, 2 % m+r (Qso) 4mtr. 0 = 0 
T=l 

For fixed to, qso, qsi one obtains an m-parameter family of motions 
depending on the parameters hpo. Hence it is obvious that the necessary 
and sufficient condition for the validity of principle 2 is that the 
functions +r be entirely independent of the parameters XPo, which means 
that (2.1) holds. 
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